

OVM & UVM Techniques for On-the-fly Reset

Muralidhara Ramalingaiah
Cypress Semiconductor Technology India Pvt. Ltd.

65/2 Bagmane Tech Park,
C.V. Raman Nagar, Bangalore, INDIA.

(91)-80-6707-3638
mura@cypress.com

ABSTRACT

When the Design Under Test (DUT) is reset during
normal operation, the testbench must act accordingly
and must not behave abnormally or give ambiguous
results. The Open Verification Methodology (OVM)
and the new Universal Verification Methodology
(UVM) both have a number of ways to implement on-
the-fly reset in various testbench components like the
monitor, driver and scoreboard.

In the Open Verification Methodology (OVM) there is
no reset phase. So it will be difficult to stop a
testbench component (like driver) during “on-the-fly
reset" while the component is processing a
transaction. The reset information must reach the
scoreboard too, to halt the checks and come to the
initial state. The test case should have control to apply
“on-the-fly reset” to the testbench components and
the scoreboard should be well able to recognize an
“on-the-fly reset”.

In the Open Verification Methodology (OVM) the
driver/monitor/scoreboard code should be able to
react to a reset, but the real potential problem occurs
whenever reset happens during normal operations.

This paper is going to explain the techniques through
which the driver can be stopped immediately
whenever there is a reset and start driving the reset
values on the bus and send the same items to the
analysis port, so even the scoreboard and coverage
model work well whenever there is an on-the-fly reset.

OVM Verification Components (OVCs) or UVM

Verification Components (UVCs) needs to support on-

the-fly reset, instead of the user controlling it from the

test case. This paper will show effective techniques to

implement on-the-fly reset for components like the

driver, monitor, and scoreboard in OVM and UVM.

This paper will also present, how one can easily

implement on-the-fly reset logic in the Universal

Verification methodology (UVM) with minimal changes

using phasing for the same code implemented in

OVM.

Keywords:

DUT, OVM, UVM, OVC, UVC, driver, monitor, virtual
sequencer, scoreboard, coverage model.

Boobalan Anantharaman
Cypress Semiconductor Technology India Pvt. Ltd.

65/2 Bagmane Tech Park,
C.V. Raman Nagar, Bangalore, INDIA.

(91)-80-6707-3102
boh@cypress.com

1. INTRODUCTION

On-the-fly reset happens during DUT operation in the
form of hard reset or soft reset. The reset that
happens through an external reset (XRES) input is a
hard reset. The reset that happens by writing into a
register (e.g. REG1) through firmware is a soft reset.
Figure 1 shows the sources for on-the-fly reset.

DUT

AHB MVC
REG 1

REG 2

XRES

AHB BUS

Figure 1 On-the-fly Reset Sources

During on-the-fly reset the testbench must not behave
abnormally or give ambiguous results.

On-the-fly reset logic can be implemented in various
testbench components like monitors, drivers and
scoreboards. During on-the-fly reset the following
things should happen in the testbench,

 Scoreboard variables should be reset

 The monitor should recognize on-the-fly resets
and qualify the transactions

 Coverage update logic should not trigger any
transition coverage except reset coverage

 The driver should recognize resets and stop
transactions at the right time

 Data Checkers should delete the transactions
which are collected in FIFOs or QUEUEs

 Protocol Checkers should recognize on-the-fly
reset

2. OVM RESET TECHNIQUES

The Generic OVM reset technique for on-the-fly reset
implementation is based on global reset events that
are generated by monitoring the on-the-fly reset
sources in the DUT through the reset interface
monitor.

mailto:mura@cypress.com
mailto:boh@cypress.com

The global events will be used by the scoreboard to
reset the scoreboard variables, to reset registers in
the register model, and to qualify the data obtained
through the analysis ports of interface
OVCs/monitors.

The same on-the-fly reset global events will be used
to exclude the functional coverage of all DUT
functionalities other than reset functionality.

Figure 2 shows a sample OVM testbench
environment with on-the-fly reset logic
implementation.

Reference Model

AGENT1 AP

AGENT2 AP

Reset AP

Register Model

Score Board/Data

Checker

Coverage Model

AGENT1 AGENT2

DUT

Reset

Monitor

XRES

Figure 2 Sample testbench environment

The Reset monitor shown in Figure 2 monitors the
external reset (XRES) pin. Whenever the reset occurs
through XRES, the monitor will create/trigger a global
reset event. The Reset monitor code is shown below,

RESET Monitor
function void build(); //reset event creation
 oep = oep.get_global_pool();
 is_reset = oep.get("RESET_EVENT");
endfunction

task run() begin
 forever begin
 @(negedge rstagent_if_monitor.reset)
 is_reset.trigger();
 end
 endtask

The scoreboard shown in Figure 2 looks for the global
reset event from the reset monitor and resets the
registers in the Register model. The scoreboard code
is shown below,

Scoreboard
task run() begin
 ovm_event_pool oep;
 ovm_event is_reset;
 oep = oep.get_global_pool();
 is_reset = oep.get("RESET_EVENT");

 forever
 begin //{
 is_reset.wait_trigger();
 register_map.reset();
 end //}
endtask

The Interface Agent1/Agent2 driver and monitor will
have their own reset logic and work independent of
the global reset monitor event.

2.1 Issues with OVM reset technique

The following are issues with the OVM reset
technique explained above,

 Drivers don’t recognize the on-the-fly reset
between transactions

 Irrespective of the on-the-fly reset, the
monitor will send data to
scoreboard/coverage components

 During on-the-fly reset, it is difficult to control
the sequencers of the sub-sequences from
the virtual_sequence

2.1.1 Driver issue

In the above OVM reset technique, drivers will be
driving the bus without considering that on-the-fly
reset occurred during execution of some transactions.
Figure 3 shows a driver that has two driver tasks that
are running independently. The RESET DRIVER task
gets a reset in between and drives the interface with
default values. But the DRIVER task that is running in
parallel to the RESET DRIVER task will be driving the
interface still without considering the reset. Due to
this, some unwanted transactions will be driven to the
interface during reset.

 DRIVER

DRIVER TaskIF

Block

RESET DRIVER

Task

O
u

tp
u

t

R
e

s
e

t

D
O
N
T

RESET

INPUT

OUTPUT

Figure 3 Driver Issue

The code below shows the top level driver that has

the driver task get_and_drive() and the reset task

reset_signals(), which are running in parallel.

Driver
 task run();
 fork
 get_and_drive();
 reset_signals();
 join_none
endtask

task get_and_drive();
 @(wait for reset to finish);
 forever begin
 seq_item_port.get_next_item(req); or try_next_item
 $cast(rsp, req.clone());
 rsp.set_id_info(req);
 drive_transfer(rsp);
 @(posedge intf.cb);
 send_idle(rsp);
 seq_item_port.item_done(rsp);
 end
endtask

 task reset_signals();
 forever begin
 @(wait for reset);
 //Reset value of DAT_out
 intf.TB.cb.DAT_out <= 'b1;
 intf.clk_en = 'b0;
 end
endtask

2.1.2 Monitor issue

In the above OVM reset technique, Irrespective of the

on-the-fly reset, the monitor will send the transactions

to scoreboard/coverage components. These

transactions are invalid because the monitor should

send only the default values during reset. Figure 4

shows two monitors that are sending data to a

scoreboard.

SCOREBOARD

MONITOR 1 MONITOR 2

DUT

ACTIVE LOW

ON-THE-FLY

RESET

Invalid

AP

Invalid

AP

Invalid

AP

Invalid

AP

Figure 4 Monitor Issue

During the active low on-the-fly reset shown in Figure

4, the data sent by the monitor to the scoreboard

analysis port is invalid.

The code below shows an agent monitor that has a
monitor_transactions() task and a reset_transactions()
task running in parallel. During the on-the-fly reset,
the monitor_transactions() task will be sending data to
the scoreboard without considering the reset.

Monitor
// Interface OVC/Agent MONITOR
task run();
 fork
 monitor_transactions();
 reset_transactions(); //Reset
 join_none
endtask

2.1.3 Sequence issue

In the above OVM technique, during on-the-fly reset

the sub-sequencers/sub-sequences in a

virtual_sequence cannot be controlled. Figure 5

shows a virtual sequence that has two threads

running in parallel. One is the reset sequence and

other is the normal layered sequence that has sub-

sequences running in parallel. If the reset happens in

between, the verification engineer cannot determine,

when to stop the sub-sequencers/sub-sequences.

Reset Sequence(S)
FORK

Virtual sequence

Reset

Sequence

Normal

Layered

Sequence

s

s

s
s

s

s

s
s

s

s

s
s

s

s

s
s

FORK

Figure 5 Sequence Issue

2.2 Solutions for OVM reset technique
issues

The following are solutions for the OVM reset
technique issues explained in section 2.1,

 Agent with qualified clock approach and
qualified data from monitor to
scoreboard/coverage

 Stopping the sequencer/sequence from the
virtual sequence

 State Machine approach

2.2.1 Qualified clock and qualified data
approach

This solution is for the driver issue specified in section

2.1.1 and the monitor issue specified in section 2.1.2.

In an agent, the interface should have a clock that is

qualified by reset. The code below shows the clock

(clk) that is qualified by the reset (sig_reset).

Agent IF
 assign qclk = (sig_reset==1) ? clk:0;
 // Actual Signals
 // USER: Add interface signals
 clocking cb @(posedge qclk);

In the driver, the qualified clock will be used to stop

driving the data into the interface of DUT. The reset

driving logic should not work based on the qualified

clock. The code below shows the top level driver that

has the driver task get_and_drive() and the reset task

reset_signals() that are running in parallel.

The task get_and_drive() has two threads running in

parallel. One thread drives the transactions and the

other thread looks for the RESET_EN event from the

reset_signals() task. When reset occurs in between,

the drive_transfer task will not drive any transactions

and the thread that looks for the RESET_EN event

will end the transaction execution and then suspend

the drive_transfer task.

Note: Don’t use the kill() function in this case,

because it may hang the simulation. Use the

suspend() function instead of that.

DRIVER
task run();
 fork
 reset_t = RESET_DE;//Initialize reset_t variable
 get_and_drive();
 reset_signals();
 join_none
endtask

 task get_and_drive();
 //wait for the initial Power On Reset
 @(reset)
 reset_t = RESET_DE; //disable event or variable
 fork
 forever begin
 seq_item_port.get_next_item(req);
 ovm_report_info(get_type_name(), "sequencer got
 next item");
 drive_transfer(rsp);//Works on qualified clock
 @(posedge intf.clk);//normal clock

 seq_item_port.item_done(rsp);
 end

 begin
 //Block to suspend the driver and say end of
 //transfer(solution)
 forever begin
 if(reset_t==RESET_EN)begin
 ovm_report_info(get_type_name(), " ON-THE-
 FLY RESET");
 this.end_tr(rsp);
 reset_t = RESET_DE;
 //drive_transfer.kill();//Never use this will make
 //to hang
 drive_transfer.suspend();//Use this but still it will
 //send data after reset
 end
 @(posedge intf.clk);
 end
 end
 join_none
endtask

Figure 6 shows two monitors that are collecting and

sending data to a scoreboard. During the active low

on-the-fly reset shown in Figure 6, the monitors will

not send data to the scoreboard.

SCOREBOARD

MONITOR 1 MONITOR 2

DUT

ACTIVE LOW

ON-THE-FLY

RESET

VALID

AP

VALID

AP

VALID

AP

VALID

AP

VALID

AP

Figure 6 Qualified Data from Monitor

The code below shows a monitor that has two tasks
monitor_transactions() and reset_transactions()
running in parallel. The monitor_transactions() task
has a collect_transfer() task that collects the data only
when there is a qualified clock. This data is the
qualified data for the scoreboard.

Monitor
task run();
 fork
 monitor_transactions();
 reset_transactions();//To reset all monitor variables
 join_none
endtask

task monitor_transactions();
begin
 @(Reset event);//From negative to positive
 forever begin
 trans_collected = new();
 @(posedge intf.cb);
 //don’t collect data when there is no clock
 collect_transfer();
 data_trans();
 end
 if (checks_enable) // Check transaction
 perform_transfer_checks();
 if (coverage_enable) // Update coverage
 perform_transfer_coverage();
 // Publish to subscribers
 item_collected_port.write(trans_collected);
 end
endtask

task collect_transfer();
 void'(this.begin_tr(trans_collected));
 trans_collected.trans_kind = WRITE;
 @(posedge intf.cb);//qualified clock
 data.push_back(intf.TB.cb.DAT_out);
 forever begin
 @(posedge intf.cb);//qualified clock
 end
endtask

Limitation: During reset, the driver will not drive

anything. But if the driver has some wait logic like

@posedge of some signals, then the driver will run

the logic under that wait logic before suspending the

driver task that leads to malfunction of the

driver/monitor and the analysis port.

2.2.2 Stopping the sequencer from virtual
sequence

This solution is for the sequence issue specified in
section 2.1.3. During on-the-fly reset, the
sequence/sequencer should be stopped from the
virtual sequence or test case.

The code below waits for the “on-the-fly reset” event
and stops the sequencer when there is a on-the-fly
reset.

Virtual Sequence/Test Case
fork
 begin
 int_agent_seq.start(int_agent_sequencer);
 end
 begin
 wait(flyonreset)
 fork
 begin
 reset_seq.start(reset_agent_sequencer);
 int_agent_sequencer.stop_sequence();
 end
 begin
 //sub_sequence
 end
 join
 end
join

Limitation: The verification engineer should know

when to stop the sequencer/sequence from the
virtual_sequence or test case.

2.2.3 State machine approach

This solution is for the driver issue specified in section
2.1.1 and monitor issue specified in section 2.1.2.
Inside an agent driver or monitor, a state machine
approach could be used to look for the on-the-fly reset
in every state. If on-the-fly reset happens in any of the
states, the state machine will stop the transaction and
go to the reset state.

Figure 7 shows the driver state machine. END is the
Boolean value that signals the end of the sequence
item. If END is false the state machine goes to the
IRDA_DRIVE state from the IDLE state and the driver
starts driving the transactions. If there is a
on-the-fly reset, the sequence-item will be terminated
and the state machine will go to the reset state.

ENDFALSE

TRUE

ITEM

DONE

STATE

=IDLERESET

IDLE

IRDA_DRIVE

START DRIVE

R
E

S
E

T
ID

L
E

R
E

S
E

T

Figure 7 Driver State Machine

The code below shows the driver state machine

implementation.

Driver
task run();
 fork
 get_and_drive();
 join_none
endtask

task get_and_drive();
 @(reset)
 forever begin
 seq_item_port.get_next_item(req);
 drive_transfer(rsp);//Works on qualified clock
 @(posedge intf.cb);//normal clock
 seq_item_port.item_done(rsp);
 end
endtask

task drive_transfer();
 STATE =IDLE;
 while(END==FALSE) begin
 case(STATE) //STATE MACHINE
 RESET: begin
 ovm_report_info(get_type_name(), "RESET
 STATE");
 //STOPPING TEST CASE

 END = TRUE;
 end
 IDLE : begin //default values
 if(if.reset) STATE= RESET;
 else begin //put next logic
 STATE = IRDA_DRIVE; end
 end
 IRDA_DRIVE : begin
 for(number of data) begin
 if(if.reset) STATE= RESET;
 else begin //put next logic
 STATE = IRDA_DRIVE;
 end
 end //End of test
 END = TRUE;
 end
 endcase
 @(posedge intf.cb);//normal clock
 end
endtask

Figure 8 shows the monitor state machine. After the
initial reset, the monitor state machine will go to the
IRDA_COLLECT state, collect the data and send
transactions to the scoreboard. During on-the-fly
reset, the monitor state machine will send the default
values along with reset information to the scoreboard.

RESET

IRDA_COLLECT

COLLECT STATE

R
E

S
E

T

COLLECT PHASE IN

MONITOR WILL

HAVE PACKET WITH

RESET

INFORMATION

Figure 8 Monitor State Machine

The code below shows the monitor implementation.

Monitor
task run();
 fork
 monitor_transactions();
 reset_transactions();//To reset all monitor variables
 join_none
endtask

task monitor_transactions();
 @(Reset event);//From negative to positive
 forever begin
 trans_collected = new();
 @(posedge intf.cb);
 collect_transfer();
 data_trans();
 end
 if (checks_enable) // Check transaction
 perform_transfer_checks();
 if (coverage_enable) // Update coverage
 perform_transfer_coverage();
 // Publish to subscribers
 item_collected_port.write(trans_collected);

endtask

task collect_transfer();
 void'(this.begin_tr(trans_collected));
 //Have the state machine here to collect data
 forever begin
 RESET: begin //default values
 if(if.reset)begin
 STATE= RESET;
 trans_collected.state=Reset;
 trans_collected.data=0;
 end
 else begin //put next logic
 STATE = IRDA_COLLECT;
 trans_collected.state=STATE;
 trans_collected.data=0;
 end
 end
 IRDA_COLLECT: begin
 for(if.data.valid==1) begin
 if(if.reset) begin
 STATE= RESET;
 trans_collected.state=Reset
 trans_collected.data=0;
 end
 else begin //put next logic
 STATE = IRDA_COLLECT;
 trans_collected.data=if.data;
 end
 end
 @(posedge intf.cb);//wait for one normal clk cycle
 end
 //During reset Transaction will have reset information
 // and default values
endtask

Benefits: This state machine approach makes life

easier with additional logic (e.g. end transaction
logic). If we follow this approach, the sequence issue
specified in section 2.1.3 will not occur. This approach
is very accurate compared to all of the previous
methods and it is highly recommended to use this
technique in OVM testbenches.

Limitation: Driver and monitor code is bound on

reset at every clock cycle. The driver code will be
complex.

3. UVM RESET TECHNIQUES

To understand the UVM reset techniques, the user
should know about the UVM run-time phases.

3.1 UVM run-time phases

The run-time schedule is the pre-defined phase
schedule that runs concurrently with the global run
phase “uvm_run_phase.” The run-time phases are
executed in a predefined order. The UVM run-time
phases and the order in which they execute are
shown in Figure 9 below.

Except for the UVM reset phases the other run-time
phases are beyond the scope of this paper. We will
examine the UVM reset phases below.

uvm_pre_reset_phase

uvm_reset_phase

uvm_post_reset_phase

uvm_pre_configure_phase

uvm_configure_phase

uvm_post_configure_phase

uvm_pre_main_phase

uvm_main_phase

uvm_post_main_phase

uvm_pre_shutdown_phase

uvm_shutdown_phase

uvm_post_shutdown_phase

Figure 9 UVM run-time phases

3.1.1 Pre reset phase

The UVM pre reset phase is used to,

 Wait for power good

 Initialize the output of the components
connected to virtual interfaces to X’s or Z’s

 Initialize the clock signals to a valid value

 Assign reset signals to X (power-on reset)

 Wait for reset signal to be asserted if not
driven by the verification environment

3.1.2 Reset phase

The UVM reset phase is used to,

 Assert reset signals

 Drive the output of the components
connected to virtual interfaces to their
specified reset or idle value

 Initialize the components and environments
to their initial states

 To start generating active edges from clock
generators

 De-assert the reset signal(s) just before exit

 Wait for reset signal(s) to be de-asserted

3.1.3 Post reset phase

The UVM post reset phase is used to start the
behavior appropriate for reset being inactive from the
components. For example, components may start to
transmit idle transactions.

Note: The UVM reset phase uses listed above in

section 3.1.1, 3.1.2, and 3.1.3 are from UVM
documentation.

3.2 UVM Reset Implementation using
UVM Reset Phase

The on-the-fly reset implementation will be done in
UVM using the UVM Reset phase.

TEST/ENV/

RESET_PHASE

Reset

Phase

Reset

Phase

RESET

AGENT

A
P

S
E

Q

DRIVER/RESET

PHASE

DRIVER RUN

PHASE

MONITOR/RESET

PHASE

MONITOR/RUN

PHASE

UVC

DRIVER/RESET

PHASE

DRIVER RUN

PHASE

MONITOR/RESET

PHASE

MONITOR/RUN

PHASE

UVC1

Score Board

R
e
s
e
t P

h
a
s
e

Figure 10 UVM Reset phase

Figure 10 shows how the reset_phase propagates
from Test or ENV to all other components in the
testbench.

The code below shows the on-the-fly reset
implementation in the UVM Agent. In the reset_phase
the reset_and_suspend() task will be called during the
on-the-fly reset. The Agent reset_and_suspend() task
will call the driver/monitor reset_and_suspend() tasks
and then stop the sequences.

Agent
task reset_phase(uvm_phase phase);
 phase.raise_objection(this, "Resetting agent");
 reset_and_suspend();
 phase.drop_objection(this);
endtask

virtual task reset_and_suspend();
 fork
 drv.reset_and_suspend();
 tx_mon.reset_and_suspend();
 rx_mon.reset_and_suspend();
 join
 sqr.stop_sequences();//Stop sequences but can’t
 //stop driver immediately
endtask

The code below shows the on-the-fly reset
implementation in the UVM driver. During the on-the-
fly reset, the reset_phase will call the
reset_and_suspend() task to drive default values to
the interface.

Driver
 task reset_phase(uvm_phase phase);
 phase.raise_objection(this, "Resetting driver");
 reset_and_suspend();
 phase.drop_objection(this);
 endtask

 virtual task reset_and_suspend();
 //drive default values to all the interface
endtask

//This Task will be called from RUN_PHASE
task get_and_drive();
 //wait for the RESET event to complete to negedge of
 //reset
 //Wait for reset and suspend
 reset_and_suspend();
 forever begin
 seq_item_port.get_next_item(req);
 drive_transfer(rsp);//Works on qualified clock
 @(posedge intf.cb);//normal clock
 seq_item_port.item_done(rsp);
 end
endtask

virtual protected task run_phase(uvm_phase phase);
 forever begin
 //Call all methods to start
 get_and_drive();
 end
endtask

The code below shows the on-the-fly reset
implementation in the UVM monitor. During the on-
the-fly reset, the reset_phase will call the
reset_and_suspend() task to clear all the local
variables.

Monitor
task reset_phase(uvm_phase phase);
 phase.raise_objection(this, "Resetting driver");
 reset_and_suspend();
 phase.drop_objection(this);
endtask

 virtual task reset_and_suspend();
 //Clear all local variables
endtask

virtual protected task run_phase(uvm_phase phase);
 forever begin
 //Call all methods to collect data
end

Control the Reset phase from the test case, ENV or
Reset monitor (as shown below),

task main_phase(uvm_phase phase);
 `uvm_info("TEST", "Jumping back to reset phase",
 UVM_NONE);
 phase.jump(uvm_reset_phase::get())
end task

Benefits in UVM: All components can be controlled

from the Env or Test. The reset_phase of each
component shall be in sync.

Limitation in UVM: The driver will still process the

last received item. To overcome this limitation, the
state machine approach explained in section 2.2.3
could be used.

4. OVM TO UVM MIGRATION - TIPS FOR
RESET

The following are tips for migrating a testbench from
OVM to UVM with respect to reset/on-the-fly reset,

 Ensure that all the reset logic implemented in

OVM should be moved to the reset phase in
UVM.

 Control the reset phases of each component
such as Interface agents, monitors and
drivers from the environment or test in UVM.
Better option is to control from the
environment.

5. SUMMARY

For the on-the-fly reset implementation, the state
machine approach is the preferred method in OVM
testbenches when compared to the other approaches
explained in section 2.2.

To implement the on-the-fly reset, UVM has the
reset_phase by which reset logic of all the
components can be controlled from tests or
verification environments. To avoid the driver
limitation specified in section 3.2, the state machine
approach is recommended in UVM testbenches too.

6. ACKNOWLEDGEMENT

The authors are grateful to the supportive family
members and the Cypress Management.

7. REFERENCES

[1] SystemVerilog 3.1a Language Reference Manual
[2] OVM Class Reference Version 2.1.1
[3] Universal Verification Methodology (UVM) 1.1
 User’s Guide
[4] OVM golden reference guide from Doulos

